THE ELBE CONCEPT

The Elbe (source: picture alliance/dpa)

Recommendations for a good sediment management practice in the Elbe

Ilka Carls & Peter Heininger

OVAM - Workshop Mechelen, 24.09.2018

01 The Concept

- The Elbe an international river
- View on the system and methodological approach
- Aspect Quality Managing contaminated sediments

02 Working with the Concept

- Progress
- Practice
- Challenges & needs

The Elbe – an international river

Integrated sediment management concept (2014)

1st Elbe management plan (2010-15)

Deficient hydromorphological conditions and contamination as supra-regional issues

Unbalanced sediment conditions and contaminated sediments among main reasons

ICPER/ RBC Elbe (2009): Sediment management concept in preparation of the 2nd management cycle (2016-2021)

The Sediment Management Concept of the ICPER - Recommendations for a good sediment management practice in the Elbe

IKSE / MKOL, Magdeburg, 2014 (DE/CZ)

Heininger et al. in Heininger & Cullmann (Eds.) "Sediment matters", Springer, 2015

Internationale Kommission zum Schutz der Elbe Mezinárondí komise pro ochranu Labe

zur Erreichung überreg

Sediment **Matters**

Many works 1990 – 2008: a solid foundation!

🕗 Springer

OVAM - Workshop

Integrated Concept for the whole River Basin

- Considers management goals management planning planning of measures implementation of measures
- Risk-based, i.e. conclusions rely on the analyses of risks from insufficient status of the sediment budget, ecological functions, ecosystem services / uses depending on sediments
- Considers and integrates the spatial interdependencies of the catchment (upstream downstream, main river - tributaries, river – sea, river – floodplain …)
- Considers sediment in terms of quantity, quality, and hydro-morphology and their interaction
- Integrates environmental and use-oriented aspects (example: navigation!)
- Takes a participative approach within institutional framework set by the WFD

View on the system – the system components

Relevant tributaries

Conceptual set up – Overview

Conceptual set up – Overview

Aspect Quality – Managing contaminated sediments

Relevant issues with regard to sediment quality

- Good chemical and ecological status / integrity of the aquatic community
- Protection of floodplain soils against pollution
- Protection of humans against contaminant uptake.

Identification of indicators

Step 1 – potentially relevant contaminants

- Review of all Czech, German and international (e.g. OSPAR) regulations (laws, ordinances, guidelines) for their chemical risk requirements
- Resulting pool of chemicals which are persistent, bio-accumulative, adsorptive
- Step 2 Elbe-relevant contaminants
- Those contaminants from Step 1 which occur in the Elbe basin (data 2003 2008; reference monitoring sites; minimum one year (mean); at least one Elbe site or one site of Category 1 tributary)

29 Elbe-relevant contaminants & classification scheme

Pollutant	Measure- ment unit	Lower threshold value (LTV)	Source Upper threshold value (UTV)		Source	
Mercury	mg/kg	0,15	OSPAR	0,47	23/2011 Sb.	
Cadmium	mg/kg	0,22	EU standard fish	2,3	23/2011 Sb.	
Plumb	mg/kg	25	de Deckere et al. 2011	53	23/2011 Sb.	
Zinc	mg/kg	200	BBodSchV	800	OGewV 2011	
Copper	mg/kg	14	de Deckere et al. 2011	160	OGewV 2011	
Nickel	mg/kg	3	23/2011 Sb.	53*	HGW nach Prange et al. 1997	
Arsenic	mg/kg	7,9	de Deckere et al. 2011	40	OGewV 2011	
Chrome	mg/kg	26	de Deckere et al. 2011	640	OGewV 2011	
α-ΗϹΗ	µg/kg	0,5	GÜBAK	1,5	GÜBAK 2009	
β-НСН	µg/kg	5	RHmV	5	RHmV 2009	
у-НСН	µg/kg	0,5	GÜBAK	1,5	GÜBAK 2009	
p,p´ DDT	µg/kg	1	GÜBAK	3	GÜBAK 2009	
p,p´DDE	µg/kg	0,31	de Deckere et al. 2011	6,8	de Deckere et al. 2011	
p,p´DDD	µg/kg	0,06	de Deckere et al. 2011	3,2	de Deckere et al. 2011	
PCB-28	µg/kg	0,04	de Deckere et al. 2011	20	OGewV 2011	
PCB-52	µg/kg	0,1	de Deckere et al. 2011	20	OGewV 2011	
PCB-101	µg/kg	0,54	de Deckere et al. 2011	20	OGewV 2011	
PCB-118	µg/kg	0,43	de Deckere et al. 2011	20	OGewV 2011	
PCB-138	µg/kg	1	de Deckere et al. 2011	20	OGewV 2011	
PCB-153	µg/kg	1,5	de Deckere et al. 2011	20	OGewV 2011	
PCB-180	µg/kg	0,44	de Deckere et al. 2011	20	OGewV 2011	
PeCB	µg/kg	1	GÜBAK	400	23/2011 Sb.	
HCB	µg/kg	0,0004	de Deckere et al. 2011	17	23/2011 Sb.	
Benzo(a)pyrene	mg/kg	0,01	EU standard fish	0,6	de Deckere et al. 2011	
Anthracene	mg/kg	0,03	de Deckere et al. 2011	0,31	23/2011 Sb.	
Fluoranthene	mg/kg	0,18	23/2011 Sb.	0,25*	de Deckere et al. 2011	
Σ 5 ΡΑΚ	mg/kg	0,6	GÜBAK	2,5	23/2011 Sb.	
TBT	µg/kg	0,02	23/2011 Sb.	20*	GÜBAK 2009	
Dioxins/Furans	ng TEQ/kg	5	2. Bericht der BLAg Dioxine 1993	20	Evers et al. 1996	

System view – Risk analysis of contaminated sediments

Aspect					
Quality	Hydromorphology	Navigation			
1. Quantitative significance of a	1. Positive influence on one or both	Inland Elbe:			
source (load / potential load)	key indicators	1. Maintain, optimize, adapt the regulating system (free-			
2. Number of relevant	2. Positive influence on further	flowing reaches) / stabilize the riverbed in the longitudinal			
contaminants of Group 1 per	indicator-parameters	section and river constructions (impounded reaches)			
source	3. Effect potential for long river	2. Relocate or add sediment			
3. Total number of relevant	reaches	3. Dredge			
contaminants per source	4. Orientation at areas of classes 3,	Tidal Elbe:			
	4, and 5	1. Reduce the contaminant import from upstream			
		2. Establish an adaptive dredged material management			

General criteria

- 1. Solving a problem at source or elimination of the underlying cause.
- 2. If the underlying cause (source) does not exist anymore, the problem should be solved possibly near to the source ("Sweeping the stairs from the top down").
- 3. The recommendation has positive effect on one or both of the other aspects.
- 4. A single investment causes lower follow-up costs in the long run.
- 5. Degree of difficulty/costs of implementation.
- 6. Safety/uncertainty in the assessment of success, e.g. because of variability of the system.
- 7. The criterion for exclusion "Absence of appropriate options for solution" is applied only in exceptional cases when the level of knowledge is very well based/substantiated.

System view – Main pollution areas

OVAM - Workshop

System view – Material flows

OVAM - Workshop

System view – Example priority pollutant Cd

	Sources	S		Range			Source S	Range
	Side stru km 300	uctures, dowr (German kilo	nstream metrage)	1			Side structures, Neratovice	4
	Groyne km 350	fields, downs (German kilo	tream metrage)	1			Side structures, Pardubice	4
	P B S	U					P B	S U
River		0						X O
- Sea	DE-Inland	Saale	Mulde			Triebisch	CZ – Uppe	r Elbe
X	P L S X ? >	s U K O	P L X X	S U X O		PL XO	s U D O	
Source P	Range		So	urce P	Range	Sourc	e P	Range
Old mining, Schlüsselsto	llen 3		Olo	d mining, eiberg area	1	Old m Roths	ining, chönberger Stollen	2
Source L	Range		Sou	ırce L	Range			
Old sites, Weisse Elste	r ?		Old Frei	mining, iberg area	1		Types of source	<u>ces</u>
Source S	Range		Sou	irce S	Range		S – Sediment	
Side structur Iower Saale	res, 2		Upj	per Mulde	3		P – Point sour	ce Dandon
4 major barr Iower Saale	ages, 2						U – Urban Are	a

02 Working with the Concept

Dredged material management in the Port of Hamburg

Implementation of the Concept

Implementation in the 2nd management cycle

- Permanent consideration in the responsible bodies of ICPER / RBC Elbe
- Report every 2 years on implementation
 - Questionnaire
- International workshop series (CZ/DE)
- Methodological progress
 - Development of tools for efficiency control (e.g. aspect quality: Sediment quality index)

Progress report 2017

 ELSA Project: case studies and financial support

Stakeholder involvement

Extreme event monitoring: flood and low water, extreme pollution situations (e.g. accidents)

Practical status

Monitoring

Knowledge

- Improvement of sediment continuity
- Removal of old contaminated sediments

ELSA

Schadstoffsanierung Elbsedimer

Practice – Removal of old sediments "The Mühlgraben-Case"

Relevant tributary "Saale":

Due to its long industrial and mining history, the Saale catchment has a high relevance for the pollutant situation in the Elbe river

 \geq

Practice – The example "Mühlgraben"

Action: Removal of old contaminated sediments from "Mühlgraben"

Approach:

- Detailed characterization of the sediment inventory in terms of quantity and contamination
- Evaluation of the relevance of the secondary structure for the main stream
- Realization as measure of the regional management plan (2nd /3rd cycle)

WFD & sediment management – a perfect match?

WFD – The River Basin Concept

- Holistic approach:
 Protection and sustainable management of all surface
 and groundwater, including transitional and coastal
 waters
- Covering all pressures and impacts
- Water management at river basin level
- River Basin Management Plans: basic instrument to implement WFD

Review of the implementation status – Challenges & needs

• **Challenges:** What does complicate the implementation?

Complexity of the system	Principle of proportionality in management planning	Lack of (basin-wide accepted) socio-economic approaches
Detailed risk analyses and expensive feasibility studies	High, unevenly distributed costs	Lack of clear political commitment Insufficient consultation and cooperation

Needs: What do we need to encourage implementation?
 "Be well informed – Manage adaptively – Take a participatory approach"

System knowledge	Reduce the responsibility ripple	Prioritization & efficient combination of measures
Comprehensive stakeholder involvement in decision- making	Solidarity approach "river basin bugdet"	WFD and beyond: Political impulse "pro sediment"

Review of implementation status – Two perspectives

Sediment management in Europe

Thank you!

Peter Heininger HZG - Centre for Materials and Coastal Research peter.heininger@hzg.de

IIka Carls Ministry of Environment and Energy ilka.carls@bue.hamburg.de