Dealing with PFAS in the Netherlands and Belgium

Herman Teirlinck Building, Brussels

▶ 18/19 november 2018

Flanders State of

the Art

Introduction speaker

- Jonas Rabaey
 - Witteveen+Bos Belgium NV (formerly known as MAVA AES NV) since 2012
 - Projectmanager for the OVAM project "PFAS in the Flanders region"
- Tessa Pancras
 - Arcadis Nederland B.V. & Expertisecentrum PFAS
 - In-situ remediation specialist since 2001
 - PFAS since 2011
 - Main author of the Concawe document and Knowledge
 Document PFAS NL

Presentation content

1. Two projects

- 1. PFAS in the Netherlands
- 2. OVAM Project on PFAS
- 2. Introduction on PFAS
- 3. Sampling campaign B/NL
- 4. Points of interests on sampling
- 5. Results sampling campaign B/NL
- 6. General conclusions

Why these projects?

- 2015: PFAS issue in the environment in the Netherlands and Belgium ?
- 2015: Centre of Expertise on PFAS
 - Witteveen+bos RI
 - Arcadis
 - TTE consultants
- 2016-2018: Project; A framework for dealing with PFAS in the Netherlands
- 2017-2018: Project; PFAS in the Flanders region

PFAS in the Netherlands

- Several PFAS projects in collaboration with:
 - National Institute for Public Health and the Environment (RIVM)
 - Numerous government authorities (municipalities, provinces)
- Specific project commissioned by the municipality of Dordrecht and the ministry of infrastruction and water
 - Knowledge document
 - Toxicity of PFAS RIVM
 - Policy evaluation
 - Site sampling
 - Sampling at suspected sites
 - Gathering all available data about presence of PFAS in the Netherlands in groundwater, surface water, drinking water and soil

OVAM project on PFAS

- Exploratory study
- 2017
- Consortium of Arcadis Belgium NV and Witteveen+bos Belgium NV and support of the Dutch colleagues from the Center of Expertise
- Focus on presence of PFAS in soil, groundwater and sediments in Flanders
 - Literature study
 - types of PFAS
 - production
 - behavior and toxicity
 - Sample collection on risk locations

Introduction PFAS

- PFAS = poly- and perfluoroalkyl substances \rightarrow "umbrella term"
 - PFAS group contain more than 6000 individual substances
 - PFOA, PFOS best known
- Anthropogenic, very stable and persistent
 - C-F bonds are very strong
 - Good stability under heat and chemical stress
 → Bioaccumulation!
- Soluble in water
- Easely bind to variety of materials (hydrophobic/lipophobic – hydrophilic)

Introduction PFAS

- Diffrent categories:
 - Perfluorinated bonds
 - Perfluorinated sulfonic acids

• Perfluorinated carboxylic acids

- Polyfluorinated precursors and fluorotelomeres
 - not fully fluorinated
 - can degrade/transform to other PFAS
- Fluoropolymers
 - eg: PTFE (teflon®)

PFPeS*

PFHxS

PFHpS

PFOS

PFNS *

PFDS

PFBA

PFPeA

PFHxA

PFHpA

PFOA

PFNA

PFDA

PFUdA

PFDoA

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

n = 11

n = 12

Introduction PFAS

- Used in wide variety of products
 - Firefighting foams (AFFF)
 - Fabrics (ea Carpets, jackets, waterproofsprays...)
 - Food packaging (Pizza boxes, food wraps, aluminum foil...)
 - Kitchenware (pans (PTFE), plastic cutlery,...)
 - Health care products, insect repellents,...
 - Metal industry (reduce surface tension during chromium plating)
- In use since approx. 1960
 - ightarrow likely ubiquitous in soil, groundwater and sludge
- only limited data available in Belgium and the Netherlands
 - ightarrow additional research efforts necessary

Sampling campaigns B/NL

- Risk location selection for sample taking
 - fire training areas
 - Industrial
 - Provincial training centers
 - Local
 - Calamity zones (fire)
 - Metal industry
 - Waste deposit sites
 - Sites around a PTFE production location
 - \rightarrow In total 24 sites were sampled in Flanders and 29 in the Netherlands
 - → the large amount of surveyed sites concerned firefighters training areas
 - \rightarrow Results were anonymous

points of interest sampling

Results sampling campaign BE

- PFAS (sum of all PFAS components measured by the laboratory in a sample) occur in elevated concentrations in groundwater
 - 71% higher than 100 x reporting limit (0,5 μ g/l)
 - 42% higher than 1000 x reporting limit (> 5 μg/l)
 - Also other compounds
 - 6:2-FTS \rightarrow is a precursor, can degrade to persistent perfluorocompounds
 - Shorter chains
 - Mainly carbon acids
 - \rightarrow more mobile

Results sampling campaign BE

• soil

- Concentrations on firefighters training areas many times higher
- Highest concentrations in top samples
- Mainly perfluorosulfonates
- Also precursors found (FTS)
- PFAS (sum of all PFAS components measured by the laboratory in a sample) occur in elevated concentrations in soil
 - 66% higher than 10 x rapportage grens (>10 μ g/kg ds)
 - 24% higher than 1000 x rapportage grens (>1.000 $\mu g/kg$ ds)

Gemiddelde concentraties per type locatie

PFAS at unsuspected locations – groundwater

PFAS at unsuspected locations – surface water

PFOS

PFAS at unsuspected locations - soil **PFOS PFOA**

< detectiegrens (0,1 µg/kg)</p>

🔵 0,1 - 1,0 μg/kg

5,0 - 10 µg/kg

10 - 50 µg/kg

>100 µg/kg

Data from Haarlemmermeer was used for data evaluation of PFOA

Data from Drechtsteden was used for data evaluation of PFOS

Region		PFOS	PFOA
Haarlemmer- meer	# data points	195	146
	# > 10 µg/kg	13 (7%)	0
	90% percentile (µg/kg d.s.)	3,4	2,0
	95% percentile (µg/kg d.s.)	4,9	4,6
Drechtsteden	# data points	111	147
	# > 10 µg/kg	0	20 (14%)
	90% percentile (µg/kg d.s.)	1,6	8,2
	95% percentile (µg/kg d.s.)	1,9	8,5

Increased background concentration:

- 2 µg/kg PFOS
- 2.5 μg/kg PFOA

Summary unsuspected locations in the Netherlands

- Groundwater,
 - \rightarrow 1-4% of the wells contains PFAS
 - \rightarrow High detection limits
 - \rightarrow PFOA > PFOS
- Surface water,
 - \rightarrow Average concentrations PFOS / PFOA 10 ng/l
 - \rightarrow > 50% of the datapoints > AA-EQS PFOS
 - \rightarrow Surface water used for drinking water contains PFAS (99% of the sampling points)
- Soil;
 - \rightarrow 2-2.5 $\mu g/kg$ 95% interval

Soil

- Stand-still principle in the Netherlands
- Emerging contaminants \rightarrow no contamination > DL allowed
- Delays site development
- Results show that PFAS are present at most locations at 2-2.5 $\mu g/kg$
- Numbers used as a basis for soil policy
- Separate policy for Dordrecht area (higher concentrations PFOA 10 μ g/kg)

General conclusions

- PFAS analysis contain 20 different substances for the moment \rightarrow inadequate \rightarrow since presence of precursors
- TOP analysis (Total Oxidizable Precursor) can be solution

Mobiliteit neemt toe met afnemende ketenlengte (m.u.v. C4/C5)

General conclusions

- Guideline values for soil, groundwater and sediment are not available in Belgium
- Guideline values for soil and groundwater are present in the Netherlands, but an update is expected (EFSA/PFOS)
- Still evolving
- Some data present on background values
 - PFAS are anthropogenic \rightarrow no presence in environment
 - More data is being gathered

General conclusions

- 2de fase of OVAM project
- Background values VITO
- Several projects in the Netherlands (atmospheric deposition around plants in Dordrecht, Helmond, background values in soil, treatment)
- Results are published on the OVAM site and on the site of the PFAS Center of Expertise:
 - <u>www.ovam.be/rapport-onderzoek-naar-aanwezigheid-van-</u> <u>pfas-in-Vlaanderen</u>
 - <u>www.expertisecentrumpfas.nl</u>

